CT-Net
CT-Net: Channel Tensorization Network for Video Classification
@inproceedings{
li2021ctnet,
title={{\{}CT{\}}-Net: Channel Tensorization Network for Video Classification},
author={Kunchang Li and Xianhang Li and Yali Wang and Jun Wang and Yu Qiao},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=UoaQUQREMOs}
}
Overview
[2021/6/3] We release the PyTorch code of CT-Net. More details and models will be available.
Model Zoo
More models will be released in a month…
Now we release the model for visualization, please download it from here and put it in ./model
. (passward: t3to)
Install
pip install -r requirements.txt
Dataset
In our paper, we conduct experiments on Kinetics-400, Something-Something V1&V2, UCF101, and HMDB51. Please refer to TSM repo for the detailed guide of data pre-processing.
Training and Testing
Please refer to scripts/train.sh
and scripts/test.sh
, more details can be found in the appendix of our paper.
Setting environment
source ./init.sh
Training
We use dense sampling
and uniform sampling
for Kinetics and Something-Something respecitively.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 main.py something RGB \
--root-log ./log \
--root-model ./model \
--arch resnet50 --model CT_Net --num-segments 8 \
--gd 20 --lr 0.02 --unfrozen-epoch 0 --lr-type cos \
--warmup 10 --tune-epoch 10 --tune-lr 0.02 --epochs 45 \
--batch-size 8 -j 24 --dropout 0.3 --consensus-type=avg \
--npb --num-total 7 --full-res --gpus 0 1 2 3 4 5 6 7 --suffix 2021
Testing
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 test_acc.py something RGB \
--arch resnet50 --model CT_Net --num-segments 8 \
--batch-size 64 -j 8 --consensus-type=avg \
--resume ./model/ct_net_8f_r50.pth.tar \
--npb --num-total 7 --evaluate --test-crops 1 --full-res --gpus 0 1 2 3 4 5 6 7
Demo and visiualization
See demo/show_cam.ipynb
,
- * `source ./init.sh`
cd demo
jupyter notebook
GitHub
https://github.com/Andy1621/CT-Net
Source: https://pythonawesome.com/ct-net-channel-tensorization-network-for-video-classification/